Problem
Show that any point of the unit square [0, 1]? is a rational Casino.
Solution

The problem is equivalent to showing that for any positive integer n a set
S, C (0,1)2 N @Q? of rational coin pairs exists such that S, is dense in the open
unit square (0,1)? and the n-sided dice can be generated via a finite-time algo-
rithm using any coin pair in S,,. From now on we thus simply fix n.

As a further notation, the coin whose heads probability equals p € (0, 1) will be
referred to in the following as the p-coin and the pair of coins with heads probabil-
ities equal to p € (0,1) and ¢ € (0, 1) respectively will be called the (p, ¢)-coin pair.

The first fact we use is derived from the existence of the Lorenzo Strip: a set
T, C (0,1/4) N Q exists such that T, is dense in (0,1/4) and the n-sided dice can
be generated using the pair of coins (1/2,t) for any ¢ € T,. Moreover, we can
extend the set T), to a dense set of rationals in (0,1/2) by observing that if the
(1/2,t)-coin pair generates the n-sided dice, then also the (1/2,2t)-coin pair does
it: the HH event in the algorithm of tossing first the 1/2-coin and then the 2¢-coin
has probability equal to ¢. This shows that the (1/2,2¢t)-coin pair can be used to
generate the t-coin too. Moreover, the set T}, can now be extended by symmetry
to (0,1) as using a p-coin is equivalent to using a (1 —p)-coin. We thus have shown:

Fact 1. A set 7,, C (0,1) N Q exists such that 7}, is dense in (0,1) and the
n-sided dice can be generated using the pair of coins (1/2,t) for any t € T,.

The second fact we need is that using an arbitrary (rational) coin we can gen-
erate a set of (rational) coins dense in (0,1), as follows.

Fact 2. Considering the t-coin for an arbitrary ¢ € (0,1) N Q, a set U; C
(0,1) NQ exists that is dense in (0, 1) and such that for any u € U; the u-coin can
be generated via a finite-time algorithm using only the t-coin.

To see this, consider N an arbitrary positive integer and the algorithm of tossing
the t-coin N times in a row, recording all 2V possible outcomes X1, Xs, ..., Xon
with their probabilities. Denoting by z € (0, 1) the largest of ¢ and 1 — ¢, all these
2N probabilities are bounded from above by zV. For a given k = 1,2,...,2" we
now consider the final states of the algorithm to be X; U Xo U --- U X} (‘heads’)



and the complementary event Xj,q U Xpio U--- U Xyn (‘tails’). In this way we
generate the ug-coin where uy, is the cumulated probability of the first & outcomes
Xy, Xs, ..., Xi. Obviously

O=ug <up <uy < - <Upv_1| < Ugn = 1

and the difference between two consecutive wug’s equals the probability of an X
outcome hence does not exceed 2. Collecting all sequences (uy),<p<on for all
positive integers N we obtain a dense set of rationals in (0,1) since 2 — 0 as
N — oo. The proof of Fact 2 is complete.

Let us now combine Facts 1 and 2 to construct the set S,,. We simply take

o= {(1/(2u),t) | t € T, and u € Uy N (1/2,1)}

where T,, and U, are the notations in the statements of Facts 1 and 2 above.

The density of S,, in the unit square follows trivially from the density of T,
and Uy in (0,1). It remains thus to show that the n-sided dice can be generated
using any coin pair in S,. To this end note that since u € U, N (1/2,1), by Fact
2 a finite-time algorithm A, exists to generate the wu-coin using only the ¢-coin.
Consider now the coin pair (1/(2u),t) € S, and the algorithm of tossing the u-coin
once (i.e. running A, ), followed by one toss of the (1/(2u)-coin. The HH event of
this algorithm has probability u* (1/(2u)) = 1/2 hence we have generated the fair
coin. The fair coin and the t-coin are however sufficient to generate the n-sided
dice since by assumption ¢t € T,,. The proof is thus complete. o



