
Problem

Show that any point of the unit square [0, 1]2 is a rational Casino.

Solution

The problem is equivalent to showing that for any positive integer n a set
Sn ⊂ (0, 1)2 ∩ Q2 of rational coin pairs exists such that Sn is dense in the open
unit square (0, 1)2 and the n-sided dice can be generated via a finite-time algo-
rithm using any coin pair in Sn. From now on we thus simply fix n.

As a further notation, the coin whose heads probability equals p ∈ (0, 1) will be
referred to in the following as the p-coin and the pair of coins with heads probabil-
ities equal to p ∈ (0, 1) and q ∈ (0, 1) respectively will be called the (p, q)-coin pair.

The first fact we use is derived from the existence of the Lorenzo Strip: a set
Tn ⊂ (0, 1/4) ∩Q exists such that Tn is dense in (0, 1/4) and the n-sided dice can
be generated using the pair of coins (1/2, t) for any t ∈ Tn. Moreover, we can
extend the set Tn to a dense set of rationals in (0, 1/2) by observing that if the
(1/2, t)-coin pair generates the n-sided dice, then also the (1/2, 2t)-coin pair does
it: the HH event in the algorithm of tossing first the 1/2-coin and then the 2t-coin
has probability equal to t. This shows that the (1/2, 2t)-coin pair can be used to
generate the t-coin too. Moreover, the set Tn can now be extended by symmetry
to (0, 1) as using a p-coin is equivalent to using a (1−p)-coin. We thus have shown:

Fact 1. A set Tn ⊂ (0, 1) ∩ Q exists such that Tn is dense in (0, 1) and the
n-sided dice can be generated using the pair of coins (1/2, t) for any t ∈ Tn.

The second fact we need is that using an arbitrary (rational) coin we can gen-
erate a set of (rational) coins dense in (0,1), as follows.

Fact 2. Considering the t-coin for an arbitrary t ∈ (0, 1) ∩ Q, a set Ut ⊂
(0, 1)∩Q exists that is dense in (0, 1) and such that for any u ∈ Ut the u-coin can
be generated via a finite-time algorithm using only the t-coin.

To see this, consider N an arbitrary positive integer and the algorithm of tossing
the t-coin N times in a row, recording all 2N possible outcomes X1, X2, ..., X2N

with their probabilities. Denoting by z ∈ (0, 1) the largest of t and 1− t, all these
2N probabilities are bounded from above by zN . For a given k = 1, 2, ..., 2N we
now consider the final states of the algorithm to be X1 ∪X2 ∪ · · · ∪Xk (‘heads’)
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and the complementary event Xk+1 ∪ Xk+2 ∪ · · · ∪ X2N (‘tails’). In this way we
generate the uk-coin where uk is the cumulated probability of the first k outcomes
X1, X2, ..., Xk. Obviously

0 = u0 < u1 < u2 < · · · < u2N−1 < u2N = 1

and the difference between two consecutive uk’s equals the probability of an X
outcome hence does not exceed zN . Collecting all sequences (uk)1≤k≤2N for all
positive integers N we obtain a dense set of rationals in (0, 1) since zN → 0 as
N →∞. The proof of Fact 2 is complete.

Let us now combine Facts 1 and 2 to construct the set Sn. We simply take

Sn := {(1/(2u), t) | t ∈ Tn and u ∈ Ut ∩ (1/2, 1)}

where Tn and Ut are the notations in the statements of Facts 1 and 2 above.

The density of Sn in the unit square follows trivially from the density of Tn

and Ut in (0, 1). It remains thus to show that the n-sided dice can be generated
using any coin pair in Sn. To this end note that since u ∈ Ut ∩ (1/2, 1), by Fact
2 a finite-time algorithm Au exists to generate the u-coin using only the t-coin.
Consider now the coin pair (1/(2u), t) ∈ Sn and the algorithm of tossing the u-coin
once (i.e. running Au), followed by one toss of the (1/(2u)-coin. The HH event of
this algorithm has probability u ∗ (1/(2u)) = 1/2 hence we have generated the fair
coin. The fair coin and the t-coin are however sufficient to generate the n-sided
dice since by assumption t ∈ Tn. The proof is thus complete. �
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