Problem

Show that any point of the unit square $[0, 1]^2$ is a rational Casino.

Solution

The problem is equivalent to showing that for any positive integer n a set $S_n \subset (0,1)^2 \cap \mathbb{Q}^2$ of rational coin pairs exists such that S_n is dense in the open unit square $(0,1)^2$ and the *n*-sided dice can be generated via a finite-time algorithm using any coin pair in S_n . From now on we thus simply fix n.

As a further notation, the coin whose heads probability equals $p \in (0, 1)$ will be referred to in the following as the *p*-coin and the pair of coins with heads probabilities equal to $p \in (0, 1)$ and $q \in (0, 1)$ respectively will be called the (p, q)-coin pair.

The first fact we use is derived from the existence of the Lorenzo Strip: a set $T_n \subset (0, 1/4) \cap \mathbb{Q}$ exists such that T_n is dense in (0, 1/4) and the *n*-sided dice can be generated using the pair of coins (1/2, t) for any $t \in T_n$. Moreover, we can extend the set T_n to a dense set of rationals in (0, 1/2) by observing that if the (1/2, t)-coin pair generates the *n*-sided dice, then also the (1/2, 2t)-coin pair does it: the HH event in the algorithm of tossing first the 1/2-coin pair can be used to generate the *t*-coin too. Moreover, the set T_n can now be extended by symmetry to (0, 1) as using a *p*-coin is equivalent to using a (1-p)-coin. We thus have shown:

Fact 1. A set $T_n \subset (0,1) \cap \mathbb{Q}$ exists such that T_n is dense in (0,1) and the *n*-sided dice can be generated using the pair of coins (1/2, t) for any $t \in T_n$.

The second fact we need is that using an arbitrary (rational) coin we can generate a set of (rational) coins dense in (0,1), as follows.

Fact 2. Considering the *t*-coin for an arbitrary $t \in (0,1) \cap \mathbb{Q}$, a set $U_t \subset (0,1) \cap \mathbb{Q}$ exists that is dense in (0,1) and such that for any $u \in U_t$ the *u*-coin can be generated via a finite-time algorithm using only the *t*-coin.

To see this, consider N an arbitrary positive integer and the algorithm of tossing the t-coin N times in a row, recording all 2^N possible outcomes $X_1, X_2, ..., X_{2^N}$ with their probabilities. Denoting by $z \in (0, 1)$ the largest of t and 1 - t, all these 2^N probabilities are bounded from above by z^N . For a given $k = 1, 2, ..., 2^N$ we now consider the final states of the algorithm to be $X_1 \cup X_2 \cup \cdots \cup X_k$ ('heads') and the complementary event $X_{k+1} \cup X_{k+2} \cup \cdots \cup X_{2^N}$ ('tails'). In this way we generate the u_k -coin where u_k is the cumulated probability of the first k outcomes $X_1, X_2, ..., X_k$. Obviously

$$0 = u_0 < u_1 < u_2 < \dots < u_{2^N - 1} < u_{2^N} = 1$$

and the difference between two consecutive u_k 's equals the probability of an X outcome hence does not exceed z^N . Collecting all sequences $(u_k)_{1 \le k \le 2^N}$ for all positive integers N we obtain a dense set of rationals in (0, 1) since $z^N \to 0$ as $N \to \infty$. The proof of Fact 2 is complete.

Let us now combine Facts 1 and 2 to construct the set S_n . We simply take

$$S_n := \{ (1/(2u), t) \mid t \in T_n \text{ and } u \in U_t \cap (1/2, 1) \}$$

where T_n and U_t are the notations in the statements of Facts 1 and 2 above.

The density of S_n in the unit square follows trivially from the density of T_n and U_t in (0, 1). It remains thus to show that the *n*-sided dice can be generated using any coin pair in S_n . To this end note that since $u \in U_t \cap (1/2, 1)$, by Fact 2 a finite-time algorithm A_u exists to generate the *u*-coin using only the *t*-coin. Consider now the coin pair $(1/(2u), t) \in S_n$ and the algorithm of tossing the *u*-coin once (i.e. running A_u), followed by one toss of the (1/(2u)-coin. The HH event of this algorithm has probability u * (1/(2u)) = 1/2 hence we have generated the fair coin. The fair coin and the *t*-coin are however sufficient to generate the *n*-sided dice since by assumption $t \in T_n$. The proof is thus complete.