
The present short mathematical note is devoted to the analysis of the inequality

e+ f ≤ L(a, b, c, d) := xa+ yb+ zc+ td (1)

with (x, y, z, t) ∈ R4 and that should hold for any quadrilateral ABCD with side
and diagonal lengths a ≥ b ≥ c ≥ d and e, f respectively. We obtain a complete,
explicit characterization of the quadruples (x, y, z, t) fulfilling this condition.

Note 1
In proving a generic estimate of the type e+ f ≤ L(a, b, c, d) that should hold for
an arbitrary quadrilateral ABCD with side and diagonal lengths a ≥ b ≥ c ≥ d
and e, f respectively one can assume w.l.o.g. that ABCD is convex and also that
the lengths a and b correspond to opposite sides. To prove for example the latter
claim assume the sides labeled a and b are adjacent, as shown in figure below.
We deduce that B,D lie on the same side of the bisector line of the segment
AC. Considering B′ to be the reflection of B in this bisector line we have that
e = |DB| ≤ |DB′| = e′ whereas the quadrilaterals ABCD and AB′CD have the
same four side lengths. It follows that if we are able to prove e′ + f ≤ L(a, b, c, d)
then e+ f ≤ L(a, b, c, d) follows too.
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It can be similarly shown that w.l.o.g. one can assume that ABCD is a convex
quadrilateral, i.e. A,C are on different sides of the line BD and also B,D are
on different sides of the line AC. Supposing for example that A,C lie on the
same side of the line BD, considering C ′ obtained by mirroring C in the line BD
we deduce that ABC ′D is, in the sense of the inequality to be shown, a “worse”
quadrilateral than ABCD since |AC ′| ≥ |AC| and |BC| = |BC ′|, |DC| = |DC ′|.
Repeating this construction several times we reach in a finite number of steps a
convex quadrilateral.
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Proposition 1
Let ABCD be a quadrilateral whose side and diagonal lengths equal a ≥ b ≥ c ≥ d
and e, f respectively. Show that

(e+ f)2/4 ≤ ab+ cd+ (a− b)2/4 (2)

and the equality is attained only by isosceles trapezoids with opposite parallel sides
c, d and opposite equal sides a = b.

Similarly we have also

(e+ f)2/4 ≤ ab+ cd+ (c− d)2/4 (3)

with equality attained only by isosceles trapezoids with opposite parallel sides a, b
and opposite equal sides c = d.

Proof
Before presenting the proof let us briefly compare (2), (3) with the classical
Ptolemy inequality known to hold for arbitrary quadrilaterals,

ef ≤ ab+ cd. (4)

We clearly have ef ≤ (e + f)2/4 and examples can be easily found (e.g. nu-
merically) to show that (e + f)2/4 ≤ ab + cd does not always hold. The Ptolemy
inequality (4) can thus not be directly improved upon by replacing the squared
geometric mean by the squared arithmetic mean (of the two diagonal lengths) on
the l.h.s. and without increasing the r.h.s. too. The estimates (2), (3) show us
therefore two ways to amend also the r.h.s. of (4) and recover generic inequalities
of Ptolemy type for the arithmetic mean of the two diagonal lengths. It is fur-
ther interesting to note that (2), (3) become strictly stronger than the Ptolemy
inequality for quadrilaterals whose largest (or smallest) two sides have the same
length, i.e. a = b or c = d.

We present below a complete proof of (2) and note already now that the same
argument delivers symetrically also (3).

Returning now to the proof of (2) we first note that due to Note 1 above
we can assume w.l.o.g. that ABCD is a convex quadrilateral and a, b and c, d
represent pairs of opposite sides. W.l.o.g. we can further assume the quadrilateral
ABCD to be labeled as represented in the Figure below, with the lengths of
AB,BC,CD,DA,AC,BD equal to a, b, c, d, e, f respectively.

Let us now consider the reflections of the vertices C,D w.r.t. the midpoint of
AB, which we denote by C ′ respectively D′. As shown in the Figure below, the
lengths of CC ′ and DD′ are denoted by g1, g2 whereas x represents the length of
DC ′.

2



Several parallelograms have been formed via this construction, most notably
CDC ′D′, ADBD′ and ACBC ′. By a standard argument based on the cosine law
we have
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g21 + g22 = 2(b2 + x2)

a2 + g22 = 2(d2 + f 2)

a2 + g21 = 2(c2 + e2)

from which by summing up all three equalities we immediately obtain

a2 + b2 + x2 = c2 + d2 + e2 + f 2.

The triangle inequality applied in ∆ADC ′ ensures c+ d ≥ x so that

a2 + b2 + (c+ d)2 ≥ c2 + d2 + e2 + f 2

or, equivalently,

(e2 + f 2)/2 ≤ (a2 + b2)/2 + cd = ab+ cd+ (a− b)2/2 (5)

which is already an estimate of Ptolemy type, for the squared quadratic mean of
the two diagonal lengths.

We briefly stop here to note that (5) seems to present some interest in itself
too, as an inequality of Ptolemy type valid for arbitrary quadrilaterals and with
equality attained iff the opposite sides denoted c, d are parallel.
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The desired conclusion (2) follows now by interpolation between (5) and the
classical Ptolemy inequality (4) with mixing weight 1/2, that is adding together
half of (5) and half of (4).

Equality in (2) is equivalent to equalities in (5) and (4), that is ABCD cyclic
and possesing two parallel sides c, d which is in turn equivalent to ABCD being
an isosceles trapezoid with equal opposite sides a = b and parallel sides c, d, or
ABCD being a degenerate quadrilateral with A,B,C,D all aligned and positioned
in this order. The proof is complete. �
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Proposition 2
If x, y, z, t ≥ 0 then the linear estimate

e+ f ≤ L(a, b, c, d) := xa+ yb+ zc+ td (1)

holds for any quadrilateral ABCD with side and diagonal lengths equal to a ≥ b ≥
c ≥ d and e, f respectively if and only if (1) holds for the set S of quadrilaterals
defined as S := Sdeg ∪ Sisotr where

1. Sdeg denotes the set of all degenerate quadrilaterals ABCD with a = b+c+d,

2. Sisotr denotes the set of all isosceles trapezoids ABCD with three equal side
lengths, i.e. a = b = c or b = c = d.

Proof
If (1) holds for any quadrilateral ABCD then it trivially holds in particular also
for all quadrilaterals belonging to S.
The converse however is not straigthforward and we now show that it follows in
fact from the nonlinear estimate derived in Proposition 1 and that we can more
conveniently reformulate as

e+ f ≤ min
(√

(a+ b)2 + 4cd,
√

(c+ d)2 + 4ab
)
. (6)

From now on we thus assume that (1) holds for all quadrilaterals belonging to
the set S and prove that it then holds for arbitrary quadrilaterals too. Moreover,
we prove that the following stronger estimate holds for an arbitrary quadrilateral
(and in the usual notations of side and diagonal lengths),

min
(√

(a+ b)2 + 4cd,
√

(c+ d)2 + 4ab
)
≤ L(a, b, c, d). (7)

At first sight it might seem odd that a stronger estimate such as (7) can be proved
from the (a-posteriori) weaker inequality (1) applied to S, a subset of the set of all
quadrilaterals. The fact that allows this to happen is that for the quadrilaterals
belonging to S the estimate (6) holds with equality. This can be easily verified by
applying the Ptolemy equality for the isosceles trapezoids (as cyclic quadrilaterals)
and by a simple algebraic calculation for the degenerate quadrilaterals elements of
Sdeg, as the minimum in (6) is attained by the second square root term and equals
a+ b.

Returning now to the actual proof we wanted to present, we first note that
obviously the minimum in (6), (7) is attained by the first square root term if and
only if a− b ≤ c− d, so that in the following we will distinguish two cases.

5



Additionally, a fact that we will repeatedly use in our analysis is the convexity
of the function

(0,∞) 3 x 7→
√
x2 + α

for any α ≥ 0. In particular, if F represents a linear function in x and I ⊆ (0,∞)
denotes an arbitrary interval then the inequality

√
x2 + α ≤ F (x)

holds on I if and only if it holds on ∂I (i.e. boundary of I).

Case 1: a− b ≤ c− d. To prove is the estimate√
(a+ b)2 + 4cd ≤ L(a, b, c, d). (8)

By a− b ≤ c− d we have that a ∈ [b, b+ c− d] so that in order for (8) to hold it is
sufficient (by the above-mentioned convexity property) to have (8) fulfilled by the
“boundary values” of a or, equivalently, by the tuples (b, b, c, d) and (b+c−d, b, c, d),
i.e.

2
√
b2 + cd ≤ L(b, b, c, d)√

(2b+ c− d)2 + 4cd ≤ L(b+ c− d, b, c, d).

Now since b ∈ [c,∞), the two inequalities above hold if they are valid for b → ∞
and b = c (invoking again the convexity of the l.h.s.’s above as functions of b). The
former (i.e. b→∞) is equivalent to (8) for the tuple (1, 1, 0, 0) whereas the latter
(i.e. b = c) is equivalent to the same (8) for the tuples (c, c, c, d) and (2c−d, c, c, d).
Let us look at these three tuples in more detail.

Estimate (8) for the tuple (1, 1, 0, 0) is obviously equivalent to (1) for the de-
generate quadrilateral with side lengths 1,1,0,0 and belonging therefore to Sdeg. It
thus holds by assumption.

Estimate (8) for the tuple (c, c, c, d) is obviously equivalent to (1) for the isosce-
les trapezoid with side lengths c, c, c, d and belonging therefore to Sisotr. It thus
holds by assumption.

Estimate (8) for the tuple (2c− d, c, c, d) is obviously equivalent to√
(3c− d)2 + 4cd =

√
(c− d)2 + 8c2 ≤ L(2c− d, c, c, d)

and since c − d ∈ [0, c] the same convexity argument shows that in order for this
estimate to hold it is sufficient to have it fulfilled for c − d = 0 and c − d = c.
This is equivalent to (8) for the tuples (c, c, c, c) and (2c, c, c, 0) and these two
conditions are nothing but (1) applied to a generic square, itself an element of
Sisotr, respectively (1) for the degenerate quadrilateral with side lengths 2c, c, c, 0
and belonging thus to Sdeg. These estimates hold then again by assumption and
the proof of Case 1 is complete.
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Case 2: c− d ≤ a− b. To prove is√
(c+ d)2 + 4ab ≤ L(a, b, c, d). (9)

We employ arguments similar to those presented in the analysis of Case 1. We
have that d ∈ [c+ b− a, c] and since d ≥ a− b− c (by the triangle inequality) we
deduce d ∈ [|c + b − a|, c]. By the above-mentioned convexity property it is thus
sufficient to have (9) hold for the tuples (a, b, c, c) and (a, b, c, |c+ b− a|) i.e.

2
√
c2 + ab ≤ L(a, b, c, c)√

(2c+ a− b)2 + 4ab ≤ L(a, b, c, c+ b− a) if c+ b− a ≥ 0√
(a− b)2 + 4ab ≤ L(a, b, c, a− b− c) if c+ b− a ≤ 0

From c ≥ d ≥ |a − b − c| we obtain c ∈ [(a − b)/2, b] and invoking once more
the convexity of the l.h.s.’s above as functions of c we deduce that it is sufficient
to have (9) hold for the tuples (a, b, b, b), (a, b, (a− b)/2, (a− b)/2), (a, b, b, 2b− a)
for 2b− a ≥ 0, (a, b, a− b, 0) and (a, b, c, a− b− c) for a− b− c ≥ 0. Let us now
discuss these tuples in more detail.

Estimate (9) for the tuple (a, b, b, b) is equivalent to (1) for the isosceles trape-
zoid with side lengths a, b, b, b and belonging to the class of quadrilaterals defined
under point 2 of our problem formulation. It thus holds by assumption.

Estimate (9) for the tuples (a, b, (a−b)/2, (a−b)/2), (a, b, a−b, 0) and (a, b, c, a−
b−c) for a−b−c ≥ 0 which all represent degenerate quadrilaterals with a = b+c+d
therefore elements of Sdeg. It is thus follows from (1) for Sdeg which holds by
assumption.

It remains to analyze (9) for the tuple (a, b, b, 2b − a) under the additional
assumption 2b− a ≥ 0. This is equivalent to√

(3b− a)2 + 4ab =
√

(a− b)2 + 8b2 ≤ L(a, b, b, 2b− a)

and since a− b ∈ [0, b] the same convexity argument ensures that this estimate is
fulfilled if it holds for the tuples (b, b, b, b) and (2b, b, b, 0), representing a square,
itself element of Sisotr, respectively a degenerate quadrilateral belonging to Sdeg.
In these two cases the desired estimate (9) is equivalent to (1) and holds thus by
assumption. The proof of Case 2 and hence of Proposition 2 are now complete. �
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We now describe explicitly the set of all tuples (x, y, z, t) ∈ R4 such that the
main linear estimate (1) is satisfied for any quadrilateral ABCD.

Proposition 3
If (x, y, z, t) ∈ R4 then the linear estimate

e+ f ≤ L(a, b, c, d) := xa+ yb+ zc+ td (1)

holds for any quadrilateral with side and diagonal lengths a ≥ b ≥ c ≥ d and e, f
respectively if and only if

x+ y ≥ 2 (10)

2x+ y + z ≥ 3 (11)

3x+ y + z + t ≥ 4 (12)

x+ y + z + t ≥ 2
√

2 if t ≤ 1/
√

2 or x ≥ 1/
√

2 (13)

x+ y + z ≥ t+ 1/t if 1/
√

2 ≤ t ≤ 1 (14)

x+ y + z ≥ 2 if t ≥ 1 (15)

y + z + t ≥ x+ 1/x if 1/2 ≤ x ≤ 1/
√

2 (16)

Proof
From Proposition 2 we know that (1) holds for arbitrary quadrilaterals if and only
if it holds for all quadrilaterals elements of S = Sdeg ∪ Sisotr. We show that (1)
for Sdeg is equivalent to (10), (11), (12) whereas (1) for Sisotr delivers all other
conditions.

Starting with Sdeg we simply note that in a degenerate quadrilateral with a =
b+ c+ d we have e+ f = a+ b = 2b+ c+ d hence (1) is equivalent to

(x+ y − 2)b+ (x+ z − 1)c+ (x+ t− 1)d ≥ 0 ∀b ≥ c ≥ d ≥ 0.

Due to linearity this is equivalent to the same estimate satisfied by the three tuples
(b, 0, 0), (b, b, 0), (b, b, b) and the resulting three conditions are exactly (10), (11),
(12).

Turning now to Sisotr and denoting the sides of the isosceles trapezoid by
(a, a, a,m) where 0 ≤ m ≤ 3a (here m denotes the length of the fourth side,
that can be smaller or larger than a), the (double) condition to be satisfied reads

2
√
a2 + am ≤ (x+ y + z)a+ tm ∀0 ≤ m ≤ a (17)

2
√
a2 + am ≤ xm+ (y + z + t)a ∀a ≤ m ≤ 3a. (18)

To analyze (17) we note that the function [0, a] 3 m 7→ 2
√
a2 + am − tm has its

first order derivative equal to (1 + m/a)−1/2 − t hence a maximum at m0 = a if
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t ≤ 1/
√

2 or at m0 = (1/t2− 1)a if 1/
√

2 ≤ t ≤ 1, or at m0 = 0 if t ≥ 1. Therefore
(17) holds iff it is satisfied at m0, which is then equivalent to (13) (under the
restriction on t only), (14), (15).

The analysis of (18) is similar. The function [a, 3a] 3 m 7→ 2
√
a2 + am − xm

has its first order derivative equal to (1 + m/a)−1/2 − x hence a maximum at
m0 = 3a if x ≤ 1/2 or at m0 = (1/x2 − 1)a if 1/2 ≤ x ≤ 1/

√
2, or at m0 = a

if x ≥ 1/
√

2. Therefore (18) holds iff it is satisfied at these three m0’s (under
the corresponding assumptions on x), resulting immediately in three conditions
equivalent to (12), (13) (under the restriction on x only) and (16). �
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