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1. In this note, I will prove the following conjecture ascribed to Erdo's:

THEOREM. Let p, q be coprime integers. Then there is an N(p,q) such that every
n > N(p,q)may be expressed as a sum of distinct numbers of the form paqb, i.e. n = ~E,p"qb

where the sum is over some set of distinct pairs of positive integers (a,b).
Prof. Davenport has suggested that the result may be strengthened by requiring that

the power qb should be bounded independently of n. This may in fact be done on the
lines of the present proof without any further idea—however, I shall not give the
details, which are easy to supply, as they would make the work harder to follow.

The number N(p, q) seems to be quite large, even when p and q are small. If one of
p, q is 2, then trivially N(2, q) = 0 (since every number may be written in binary form).
However N(3,4) = 54, N(3, 5) = 22, N(3, 7) = 135, and N(4:, 5) > 400.

I present the proof as I found it—that is, back to front. After two paragraphs of
preparation, the argument will be in three steps, of which the first two simplify the
problem, and the third completes the proof.

2. Notation. Any number of the form paqb is completely specified by the pair (a, b),
which may be thought of as an integer lattice point in the first quadrant; we will
denote the first quadrant by Q. A sum of distinct paqb thus corresponds to a set <? of
lattice points with <f £ 2.—we write

(a,&)€<?

for short.
We use VJ, n for set-theoretic union and intersection; but + and — will refer to vector
addition and subtraction. That is,

(a,6)e[«?-(.4,-B)] if and only if
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Note that <$>{£x u i2) = <f>(£x) + <f>(<?2) if <̂ i and (i?2 are disjoint. The expression
retains its meaning even if £ is not contained in 2..

3. Preliminary Lemmas. First, we show that the theorem is at least plausible, in the
sense that there is a sufficient supply of 0(<f).

LEMMA 1. Given X, let E(X) be the number of sets <f such that <$>($) < X. Then
E(X)/X -* oo as X -+ oo.

Proof. There are at least J logj, X powers of p less than Xi, and at least £ logg X
powers of q less than Xi. Hence, there are at least ^ logj, X.logq X distinct paqb less
than X*. The sum of all of these is at most X$ log2 Xj 16 logj) logg, which is less than
X for large enough X; so any subset of them gives an <f with <j>(&) < X. Hence

E(X) > 2&1°SPXI°SIX > X2

for large enough X.

COROLLARY. For any coprime p, q, there are disjoint sets &x, <f 2 contained, in 2 such
that fyjfj = &PJ<?2).

This is simply a tremendous weakening of the lemma. For example,

l + 52 + 5.7 = 5 + 7 + 72 _ 6 i ; 52 7 = 1 + 72 + 53 = 175.

We will also need

LEMMA 2. There is an Xo such that for every X > Xo there is apaqb between fX and X
(that is, such that | Z < paqb < X).

This is trivial; we may indeed find b bounded independently of X.

4. We may now start on the serious business of proving the theorem. Our first step is
Prop. A. The gaps between successive 0(<f) (with $<=,&) are bounded in length.
For, suppose that there was a gap from say X to X + Y, such that no £ between X and

X+ Y is of the form <}>(&). Suppose that X > Xo; then Y < \X, otherwise Lemma 2
gives us a £ of the form paqb between X + \ Y and X+Y. By Lemma 2 there is a pAqB

between fX and Z; and then no g' between X -pAqB and X+Y —pAqBis of the form
W). (For if £' = W), then £' < fX-pAqB < pAqB; thus (A,B)£<§", and
£ = £' +p^qB w o u l d be a number between X and X+Y oi the form $(&), with
«? = <f' >J (A, B).) Hence if we have a gap from X to X+Y, with X > Xo, then we
can find another earlier gap of the same length. Accordingly, the greatest gap-length
must occur with some X ^ Xo; and so, by Lemma 2 again, the gaps between successive
4>($) never exceed Xo.

COROLLARY. Given any X, there is a Y < Xo and anS ^ 2. such that X—Y = <f>(S).
For example, in the case (p, q) = (5, 7), the above line of argument shows that the

longest gap-length must occur before 125. In fact, the longest gap is from 14 to 24
inclusive; this gap is repeated as 139-149.

5. The second step in our proof is
Prop. B. To prove the theorem it will be enough to show that the numbers <j>(S) with

i ? c ^ contain a complete arithmetic progression of the shape m .pAqB + R for integer
m > 0.
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Indeed, if every m.pAqB + B is of the form ${$), then every number of the pro-
gression pq(m.pAqs + R) is of the form <p((a"), where &' contains no point (a,b) with
either a or b zero. So it is enough to show that we can fill in the gaps of this progression
by adding on appropriate powers of p and appropriate powers of q. This is easy—
any residue class modulo qB+1 is congruent to a sum of distinct powers of pA+1,

e.g. jfi*+W> = l(modgi ?+1) if D = <?>(qB+1), whence £pu+r>Dk = p (mod qB+1); and
k=X

similarly g<£+«E = 1 ( m o d / + 1 ) for E = <j>(pA+1). Thus, if I s T (modpA+1qB+1),
t h e n X - X(pu+i)Dk + q(B+i)Ek) _ p q R

where the sum is taken from k = 1 to k = pA+^qB+i + y—pqR; and then X — 2 > 0 so
long as say X > (pq)F with F = (A+B+ l)(pq)2^+Bl Thus Z - S = ${#') by hypo-
thesis, and the theorem will follow.

6. Now we come to our final step.
Prop. G. The numbers of the form $(<$) with £ £ 2. contain a complete arithmetic

progression of form m .pAqB + R, for m ^ 0.
The theorem will follow immediately when we combine this with Prop. B. I t is

convenient to prove Prop. C in the form
Prop. C. There are integers A > 0, B ^ 0 and a rational number r = B\pAqB such that

m + ris of the shape 4>\J> — {A, B)~\ with £ c i?, for all integers m ^ 0.
To do this, we will use the Corollary of Lemma 1 to fill in the gaps left after Prop. A.

Suppose that 0(«?x) = 0(< 2̂) ̂ ^ ^ i n ^2 = °- T a k e (^i> ^ 1 ) i n <^iu ^ 2 s o t h a t (Ax + .Bj)
is as large as possible. Say (Ax, Bj) €<f>2\ then we have pAiqBi = ^(^x) — <j>C&x) where
^x = Sx and ^ »J (̂ Lĵ , 5X) = £2. Thus we have an identity

where the sets J>, ̂  — (^1^ BJ, &± — (Alt Bx) are disjoint.
To prove the proposition we will need several such identities. Suppose then that we

have found points and sets (A^B^,^, <Si for i = 1,..., Xo such that
(i) 1 = t[&t-(At,Bt)]-ft9i-(Ai,Bt)]foTi=l,...,X0;
(ii) the (2Z0 + 1) sets jg, ̂  - (Ait BJ, ^{ - (At, BJ are all disjoint;
(iii) the sequences {.4J, {-BJ are both increasing.

Write x.

so that in fact A = ,4 Z , B = i? x . Then r = R/pAqB, a rational number with deno-
minator pAqB. Suppose X is a positive integer. Then by Prop. A, Corollary, we can find
Y < Xo such that X = Y + </>(£) with S s 2.. But now,

^ - (Ait Bt)], by (i),
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for short, where

A B B

so that 34?is, as required, a union of disjoint subsets of £L.
This will complete the proof of Prop. C once we have shown how to find (At, Bt),

^ , (Si to satisfy (i), (ii), (iii). But this is easy. We have already found AX,BX, IF-^, ^ by
applying the Corollary to Lemma 1 with P = p,Q = q. Now we find A2, B2, ^2, @2 by
applying the Corollary with P = p**+\ Q = g»i+i; ^2-(A2,B2), &2-(A2,B2),
!FX — {A1: Bx), <gx — [Ax, Bi) are disjoint since the points of J ^ - (A2, B2), @2 — {A2, B2)
have coordinates altogether larger than those of the points of ^ i— (Alt Bj),
^§x — (A1; Bj). After this we proceed inductively—at the ith stage, we find At, Bi; ^ , &i

by applying the Corollary with P = pAi-i+1, Q = qBi-i+1.
This completes the proof of the theorem.

[Note added in proof.] The theorem of this note has been beautifully generalized by
J. W. S. Cassels in a paper probably to be published in Acta Mathematica Szeged.
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Suppose that/(z) = ^ anz
n and g(z) = 2 bn

zn a r e regular in \z\ < 1 and set
l l

S. Mandelbrojt (The New Scottish Book, Problem 344) conjectured that if/ and g are
univalent in \z\ < 1, then so is fog. In particular if fp{z) is denned inductively by
A(2) = /(z)> /j)+i(z) = /P(z) °/(z)> ^ would follow from this that if f(z) is univalent,then
so is/p(2) for every positive integer p.

We shall provide a counterexample to the above conjecture by proving the following

T H E O R E M . Suppose that p ^ 3 , ( p - 2)jp < c o s A < 1 and 6 = 1 + eu. Then

is univalent in \z\ < 1 butfp(z) is not.
Elementary considerations show that

24 Camb. Philos. 55, 4


