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Can you tile a convex polygon with a finite number of concave
quadrilaterals?

To be considered a solver, either give a proof of impossibility or
construct an example tiling.

For completeness, a shape is called convex if for any two points in it,
the entire straight line segment between them is also in it. Concave
is the opposite. And by tiling we mean a partitioning of the area of
the polygon.

We will show that every polygon tiled in concave quadrilaterals is itself
concave.

First we prove the following lemma.

Lemma 1. Let P be a polygon tiled into n subpolygons, the set of whose we
denote C. Then there exists an order of C, {Ci}1≤i≤n such that for every k ≤ n

k⋃
i=1

Ci

is simply connected.

Proof. Let C1 be an arbitrary element of C. Inductively we choose Ck. Assume
C1, . . . , Ck have been chosen such that ∪ki=1Ci is simply connected. Let Ck =
C \ {Ci}i≤k be the set of remaining Ci.

Assume there is no Ck+1 ∈ Ck such that
⋃k+1

i=1 Ci is simply connected. Let us

choose the C ′ ∈ C such that
⋃k

i=1 ∪C ′ is connected, and the number of elements
in C that are in the holes formed by the connected (but not simply connected)⋃k

i=1 ∪C ′ is minimal under all choices of C ′. Let us now choose C ′′ in one of

the aforementioned holes, such that
⋃k

i=1 ∪C ′′ is connected (and again it is not

simply connected). The holes in
⋃k

i=1 ∪C ′′ contain less elements of C than the

holes in
⋃k

i=1 ∪C ′, hence we could not choose a C ′ satisfying the minimality

condition. Thus there is always a Ck+1 to choose such that
⋃k+1

i=1 Ci is simply
connected.
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(We define the holes to be the connection components of R \
⋃

C∈Ck C that
are finite.)

Let us now assume a polygon P is tiled into n concave quadrilaterals. By
Lemma 1 we can enumerate the quadrilaterals by Q1, . . . , Qn, such that the
union of the first k quadrilaterals Pk =

⋃k
i=1Qi is simply connected for all k,

and hence a polygon.
For any polygon F we define the quantities p(F ), n(F ), d(F ) as follows:

• p(F ) is the number of convex corners of F , i.e. corners with inner angles
less than π.

• q(F ) is the number of concave corners of F , i.e. corners with inner angles
larger than π.

• d(F ) = p(F )− q(F ).

Note that for a concave quadrilateral Q we have p(Q) = 3, q(Q) = 1, d(Q) = 2.

Lemma 2. Given a polygon F and a concave quadrilateral Q, such that their
interiors are disjoint and F ∪Q is simply connected, we have d(F ∪Q) ≤ d(F ).

Proof. Let D be the intersection of Q and F . By the above criteria, D is either
a point or a sequence of line segments.

In the case D is a point, we have one of the following cases

• D lies on a convex corner of F , and on the concave corner of Q. Instead
of those two corners, F ∪Q has two concave corners, hence

d(F ∪Q) = d(F )− 1 + d(Q) + 1− 2 = d(F )

• D lies on a concave corner of F , and on a convex corner of Q. Instead of
those two corners, F ∪Q has two concave corners, hence

d(F ∪Q) = d(F ) + 1 + d(Q)− 1− 2 = d(F )

• D lies on convex corners of both F and Q. From the two generated corners
of F ∪Q at least one is concave, hence

d(F ∪Q) ≤ d(F )− 1 + d(Q)− 1− 0 = d(F )

• D lies on a convex corner of either F or Q, and on a boundary element of
the other. Both new generated corners of F ∪Q are concave, hence

d(F ∪Q) = d(F ) + d(Q)− 1− 2 = d(F )− 1

Let us now assume D is a connected sequence of line segments. We denote
the two endpoints by A and B, as depicted in Figure 2
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Figure 1: Example of when D is a point

Figure 2: Example of when D is a line

Again we want to estimate d(F ∪Q). We do this by observing the quantity
V = d(F ∪Q)− (d(F ) + d(Q)). We split V in three peices:

VI counting all corners of F and Q that end up in the interior of F ∪ Q.
They don’t provide to d(F ∪ Q), and each one provides +1 for one of d(F ) or
d(Q) and −1 for the other. Hence VI = 0.

VO counting all corners of F and Q that end up in the boundary of F ∪ Q
and are not equal A or B. Each of them provides ±1 to d(F ∪Q) as well as to
d(F ) + d(Q). Thus again, VO = 0.

What is left is to consider VAB , counting all corners of F,Q, and F ∪Q lying
in A or B.

For both A or B, the following cases can occur:

• Convex corner of F and convex corner of Q, convex/concave, or no corner
of F ∪Q. In this case V is reduced by 1, 3, or 2 respectively.

• Convex corner of F and concave corner of Q, and as a consequence a
concave corner of F ∪Q. In this case V is reduced by 1. The same holds
for concave corner of F and convex corner of Q.

• Convex corner of F , no corner (enterior of an edge) of Q, and as a
consequence a concave corner of F ∪Q. In this case, V is reduced by 2.

We conclude that for each A and B, VAB is reduced by at least 1, resulting
in VAB ≤ −2. Thus

V = VI + VO + VAB ≤ −2

and consequentially

d(F ∪Q) = d(F ) + d(Q) + V ≤ d(F ) + d(Q)− 2 = d(F ).
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We can now apply this lemma on P . We know d(P1) = d(Q1) = 2
As Pi+1 = Pi ∪ Qi+1, we conclude from Lemma 2 that d(Pi+1) ≤ d(Pi).

Inductively we get
d(P ) = d(Pn) ≤ d(P1) = 2.

Any convex polygon R with nonempty interior (this is what we obviously
are dealing with here) has d(R) = p(R) ≥ 3. It can thus not be the union of
finitely many concave quadrilaterals.
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